Complessità: ricerca sequenziale

Analisi della complessità, in tempo e asintotica, dell’algoritmo di ricerca sequenziale. Il codice analizzato è il seguente

presenta operazioni di

  • assegnamento: 1, 5, 8, 9
  • confronto: 2, 4, 7
  • aritmetico-logiche: 3, 6

Il tempo totale richiesto da questo sottoprogramma alla CPU è

T = T1+(T2+T3+T4+T5+T6)*x+(T2+T3+T4)+T7+T8|9

con

  • (T2+T3+T4+T5+T6), le operazioni svolte ad ogni passo del While
  • x, il numero di volte che viene eseguito il While (da 0 a n)
  • (T2+T3+T4), quando K viene individuato alla posizione i-esima oppure il vettore finisce
  • T8|9, una delle due istruzioni finali

Per semplificare i calcoli si decide di trascurare le differenze esistenti tra i tempi di esecuzione delle diverse operazioni e di stabilire un tempo costante per tutte, allora

T = 6+5x

I valori effettivi di T sono

  • vettore vuoto: T1+(T2+T3+T4)+T7+T8 = 6
  • elemento in 1° posizione: T1+(T2+T3+T4)+T7+T9 = 6
  • elemento in 2° posizione: T1+[T2+T3+T4+T5+T6]+(T2+T3+T4)+T7+T9 = 6+5*1 = 11
  • elemento in 3° posizione: T1+[T2+T3+T4+T5+T6]*2+ … = 6+5*2 = 16
  • elemento in ultima posizione: 6+5*(n-1)
  • elemento non presente: 6+5n

Analizziamo i casi più interessanti

  • Caso ottimo, quando il vettore è vuoto oppure l’elemento K compare in 1° posizione: T=6
  • Caso pessimo, se l’elemento K non è presente: T=6+5n
  • Caso medio, supponiamo di effettuare n ricerche con l’elemento presente alle diverse posizioni: T=3.5+2.5n

Conclusioni

Il tempo richiesto è, tranne che nei casi banali, una funzione lineare di n, il numero di elementi presenti nel vettore

T(n)=c1+c2n

I valori delle due costanti c1 e c2 sono modesti e comunque poco significativi.


I calcoli per il caso medio

T=[(6+5*0)+(6+5*1)+(6+5*2)+...+(6+5(n-1))]/n
=[6n+5(1+2+...+n-1)]/n
=[6n+5(n-1)*n/2]/n
=6+5(n-1)/2
=6+5/2*n-5/2
=7/2+5/2*n
=3.5+2.5*n

Osserva che
1+2+...n=n(n+1)/2
Notice: This work is licensed under a BY-NC-SA. Permalink: Complessità: ricerca sequenziale

Comments are closed.