Coordinate polari

Vedi: Wikipedia > Sistema di coordinate polari.

La prima immagine rappresenta la funzione

  • \rho=1
  • 0 \le \theta \le 2 \pi

Le successive sono variazioni della prima.

  • \rho=\theta
  • FMAX =2*pi
  • \rho=\theta
  • START=0
  • STOP=10*pi
  • FMAX=10*pi
  • N=2000
  • \rho=\theta
  • START=0
  • STOP=5*pi
  • FMAX=5*pi
  • N=1000

Disegnata 2 volte…

  • \rho=\log (1+\theta)
  • START=0
  • STOP=12*pi
  • FMAX=4
  • N=2000

Funzione coseno

  • \rho=\cos \theta
  • START=0
  • STOP=pi
  • FMAX=1
  • N=1000
  • \rho=|\cos \theta |
  • STOP=2*pi
  • \rho=(\cos \theta)^2

1+coseno…

  • \rho=1+\cos \theta
  • START=0
  • STOP=2*pi
  • FMAX=2
  • \rho=1+2*cos(\theta)
  • START=0
  • STOP=2*pi
  • FMAX=3
  • \rho=1+|\cos \theta|
  • \rho=1+(\cos \theta)^2

Variazioni della pulsazione

  • \rho=\cos 2\theta

Per n pari, 2n petali

  • \rho=\cos 3\theta

Per n dispari, n petali

  • \rho=\cos \frac{1}{2}\theta
  • STOP=4*pi
  • \rho=\cos \frac{1}{3}\theta
  • STOP=3*pi
  • \rho=\cos \frac{2}{3}\theta
  • STOP=6*pi
  • N=2000

Reciproco del coseno

  • \rho=\frac{1}{\cos 2x}
  • START=0
  • STOP=2*pi
  • FMAX=2
  • N=2000
  • \rho=\frac{1}{\cos\frac{1}{2}x}
  • STOP=4*pi
  • \rho=\frac{1}{\cos\frac{1}{3}x}
  • STOP=3*pi
  • FMAX=3
  • \rho=\frac{1}{\cos\frac{2}{3}x}
  • STOP=6*pi
  • FMAX=3

Tangente…

  • \rho=\tan \theta
  • START=0
  • STOP=2*pi
  • FMAX=1
  • N=1000
  • \rho=\tan \frac{1}{2}\theta
  • FMAX=2
  • \rho=|\tan \theta|^{\frac{1}{|\tan \theta|}}
  • STOP=pi
  • FMAX=1.5
  • \rho=1+|\tan \theta|^{\frac{1}{|\tan \theta|}}
  • STOP=2*pi

Ancora…

  • \rho=\cos(x)+\cos(3x)
  • START=0
  • STOP=2*pi
  • FMAX=2

Notice: This work is licensed under a BY-NC-SA. Permalink: Coordinate polari

Comments are closed.