- np.linalg.eig(a), determinante
- np.linalg.eig(a), autovalori e autovettori
- np.linalg.norm(a)
- np.linalg.solve(a,b)
- …
Inoltre
- np.dot(a,b)
- np.inner(a,b)
- np.outer(a,b)
- np.trace(a)
- …
Prova le operazioni più frequenti dell’algebra lineare
import numpy as np
a = np.array([[1.0, 2.0], [3.0, 4.0]]) # [[ 1. 2.] [ 3. 4.]]
a.transpose() # array([[ 1., 3.], [ 2., 4.]])
np.linalg.inv(a) # array([[-2. , 1. ], [ 1.5, -0.5]])
u = np.eye(2) # array([[ 1., 0.], [ 0., 1.]])
j = np.array([[0.0, -1.0], [1.0, 0.0]])
j @ j # array([[-1., 0.], [ 0., -1.]])
np.trace(u) # 2.0
y = np.array([[5.], [7.]])
np.linalg.solve(a, y) # array([[-3.], [ 4.]])
np.linalg.eig(j) # (array([ 0.+1.j, 0.-1.j]), array([[ 0.70710678+0.j, 0.70710678-0.j ],
# [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]))
Vedi