Metodo di Esaustione (Quadrato)

Osserva

  • Il primo poligono è un quadrato
  • Il valore di \Delta è necessario per il passo successivo
  • Il poligono successivo ha il doppio dei lati del precedente
l_n
Lato
p_n
Perimetro
\pi_n
Pi greco
a_n
Apotema
\Delta_n
Delta
4\displaystyle l_4\displaystyle 4\cdot l_4\displaystyle \frac{p_4}{2 \cdot r}\displaystyle \sqrt{r^2-\left(\frac{l_4}{2}\right)^2}\displaystyle r-a_4
8\displaystyle \sqrt{\left(\frac{l_4}{2}\right)^2+\Delta_4^2}\displaystyle 8\cdot l_8\displaystyle \frac{p_8}{2 \cdot r}\displaystyle \sqrt{r^2-\left(\frac{l_8}{2}\right)^2}\displaystyle r-a_8
16\displaystyle \sqrt{\left(\frac{l_8}{2}\right)^2+\Delta_8^2}\displaystyle 16\cdot l_{16}\displaystyle \frac{p_{16}}{2 \cdot r}\displaystyle \sqrt{r^2-\left(\frac{l_{16}}{2}\right)^2}\displaystyle r-a_{16}
  • Sostituendo il valore \displaystyle l_4= \sqrt{2}\cdot r
l_n
Lato
p_n
Perimetro
\pi_n
Pi greco
a_n
Apotema
\Delta_n
Delta
4\displaystyle \sqrt{2}\cdot r\displaystyle 4\cdot \sqrt{2}\cdot r\displaystyle 2\cdot \sqrt{2}\displaystyle \frac{1}{2}\cdot\sqrt{2}\cdot r\displaystyle \left(1-\frac{1}{2}\cdot\sqrt{2}\right)\cdot r
8\displaystyle \sqrt{2-\sqrt{2}}\cdot r\displaystyle 8 \cdot \sqrt{2-\sqrt{2}}\cdot r\displaystyle 4 \cdot \sqrt{2-\sqrt{2}}\displaystyle \frac{1}{2}\cdot\sqrt{2+\sqrt{2}} \cdot r\displaystyle \left(1-\frac{1}{2}\cdot\sqrt{2+\sqrt{2}}\right) \cdot r
16\displaystyle \sqrt{2-\sqrt{2+\sqrt{2}}}\cdot r\displaystyle 16 \cdot \sqrt{2-\sqrt{2+\sqrt{2}}}\cdot r\displaystyle 8\cdot \sqrt{2-\sqrt{2+\sqrt{2}}}\displaystyle \frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot r\displaystyle \left(1-\frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\right) \cdot r
  • L’approssimazione di \pi non dipende da r
  • r=1
l_n
Lato
p_n
Perimetro
\pi_n
Pi greco
a_n
Apotema
\Delta_n
Delta
4\displaystyle \sqrt{2}\displaystyle 4\cdot \sqrt{2}\displaystyle 2 \cdot \sqrt{2}\displaystyle \frac{1}{2}\cdot\sqrt{2}\displaystyle 1-\frac{1}{2}\cdot\sqrt{2}
8\displaystyle \sqrt{2-\sqrt{2}}\displaystyle 8 \cdot \sqrt{2-\sqrt{2}}\displaystyle 4 \cdot \sqrt{2-\sqrt{2}}\displaystyle \frac{1}{2}\cdot\sqrt{2+\sqrt{2}}\displaystyle 1-\frac{1}{2}\cdot\sqrt{2+\sqrt{2}}
16\displaystyle \sqrt{2-\sqrt{2+\sqrt{2}}}\displaystyle 16 \cdot \sqrt{2-\sqrt{2+\sqrt{2}}}\displaystyle 8\cdot \sqrt{2-\sqrt{2+\sqrt{2}}}\displaystyle \frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\displaystyle 1-\frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}
32\displaystyle \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\displaystyle 32 \cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\displaystyle 16\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\displaystyle \frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}\displaystyle 1-\frac{1}{2}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}

Approssimazioni

Osserva le approssimazioni successive di pi greco e una forma equivalente (produttoria di Viète)

Passo#Lati\pi\pi\pi
14\displaystyle 2 \cdot \sqrt{2}\displaystyle 2 \cdot \frac{2}{\sqrt{2}}2,82842712474619
28\displaystyle 4 \cdot \sqrt{2-\sqrt{2}}\displaystyle 2 \cdot \frac{2}{\sqrt{2}}\cdot \frac{2}{\sqrt{2+\sqrt{2}}}3,06146745892072
316\displaystyle 8 \cdot \sqrt{2-\sqrt{2+\sqrt{2}}}\displaystyle 2 \cdot \frac{2}{\sqrt{2}}\cdot \frac{2}{\sqrt{2+\sqrt{2}}}\cdot \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}}3,12144515225805
432\displaystyle 16\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}3,13654849054594
564\displaystyle 32\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}3,14033115695475
6128\displaystyle 64\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}3,14127725093277
72563,1415138011443
85123,14157294036709
910243,14158772527716
1020483,1415914215112

Approfondimenti