Anno 2001 PNI – 6 – Rettangoli al centro

Con uno dei metodi di quadratura studiati, si calcoli un’approssimazione dell’integrale definito \displaystyle \int_{0}^\pi\ \sin{x}\ dx e …


Metodo dei rettangoli con altezze nel punto centrale

Un rettangolo

  • \displaystyle m = \frac{a+b}{2}= \frac{0+\pi}{2} = \frac{\pi}{2}
  • \displaystyle f(m) = f\left(\frac{\pi}{2}\right) = \sin{\frac{\pi}{2}} = 1
  • Area = \displaystyle (b - a)\cdot f(m) = (\pi -0)\cdot 1 = \pi

Al variare di n

Le ascisse per i punti centrali di ogni intervallo

  • x = a+h/2, a+h/2+h, a+h/2+2h, …, a+h/2+(n-1)h
nhi*xi*yi*Area= \displaystyle h\cdot (y_0^*)
1\pi0*\displaystyle \frac{\pi}{2}1= \pi\cdot 1
h/2= \pi
\displaystyle \frac{\pi}{2}= 3,141593
nhi*xi*yi*Area= \displaystyle h\cdot (y_0^*+y_1^*)
2\displaystyle \frac{\pi}{2}0*\displaystyle \frac{\pi}{4}\displaystyle \frac{\sqrt{2}}{2}= \displaystyle \frac{\pi}{2}\cdot\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)
h/21*\displaystyle \frac{3}{4}\ \pi\displaystyle \frac{\sqrt{2}}{2}= \displaystyle \frac{\sqrt{2}}{2}\ \pi
\displaystyle \frac{\pi}{4}= 2,221442
nhi*xi*yi*Area= \displaystyle h\cdot (y_0^*+y_1^*+y_2^*)
3\displaystyle \frac{\pi}{3}0*\displaystyle\frac{\pi}{6}\displaystyle\frac{1}{2}= \displaystyle\frac{\pi}{3}\cdot\left(\frac{1}{2}+1+\frac{1}{2}\right)
h/21*\displaystyle\frac{\pi}{2}1= \displaystyle\frac{2}{3}\ \pi
\displaystyle \frac{\pi}{6}2*\displaystyle\frac{5}{6}\,\pi\displaystyle\frac{1}{2}= 2,094395