Verificare l’uguaglianza e utilizzarla per calcolare un’approssimazione di pi greco, applicando un metodo di integrazione numerica.
Metodo dei trapezi
n | h | i | xi | yi | Area | = ![]() |
1 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
Pi greco | = ![]() | |||||
= ![]() | ||||||
= 3,0 | ||||||
n | h | i | xi | yi | Area | = ![]() |
2 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
2 | ![]() | ![]() | Pi greco | = ![]() | ||
= ![]() | ||||||
= ![]() | ||||||
= 3,1 | ||||||
n | h | i | xi | yi | Area | = ![]() |
3 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
2 | ![]() | ![]() | Pi greco | = ![]() | ||
3 | ![]() | ![]() | = ![]() | |||
= ![]() | ||||||
= 3,123077 | ||||||
n | h | i | xi | yi | Area | = ![]() |
4 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
2 | ![]() | ![]() | Pi greco | = ![]() | ||
3 | ![]() | ![]() | = ![]() | |||
4 | ![]() | ![]() | = ![]() | |||
= 3,131177 | ||||||
n | h | i | xi | yi | Area | = ![]() |
5 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
2 | ![]() | ![]() | Pi greco | = ![]() | ||
3 | ![]() | ![]() | = ![]() | |||
4 | ![]() | ![]() | = ![]() | |||
5 | ![]() | ![]() | = 3,134926 | |||
n | h | i | xi | yi | Area | = ![]() |
6 | ![]() | 0 | ![]() | ![]() | = ![]() | |
1 | ![]() | ![]() | = ![]() | |||
2 | ![]() | ![]() | Pi greco | = ![]() | ||
3 | ![]() | ![]() | = ![]() | |||
4 | ![]() | ![]() | = ![]() | |||
5 | ![]() | ![]() | = 3,136963 | |||
6 | ![]() | ![]() |