Esame di Stato 2008 – 6

Se \displaystyle {n \choose 1}, \displaystyle {n \choose 2}, \displaystyle {n \choose 3}, con n>3, sono in progressione aritmetica, qual è il valore di n?


\displaystyle {n \choose k} =\frac{n!}{k!(n-k)!}

\displaystyle {n \choose k} =\frac{n(n-1)\ \cdots\ (n-k+1)}{k!}

\displaystyle n \ge k \ge 0

\displaystyle n\ge1, \displaystyle n\ge2, \displaystyle n\ge3\displaystyle n \ge 3

Soluzione 1

\displaystyle {n \choose 1}+x={n \choose 2}

\displaystyle {n \choose 2}+x={n \choose 3}

Si tratta di risolvere l’equazione

\displaystyle {n \choose 3}-{n \choose 2}={n \choose 2}-{n \choose 1}

\displaystyle {n \choose 3}-2{n \choose 2}+{n \choose 1}=0

n=7

Soluzione 2

Calcola i coefficienti binomiali

n\displaystyle {n \choose 1}\displaystyle {n \choose 2}\displaystyle {n \choose 3}
3\displaystyle {3 \choose 1} = 3\displaystyle {3 \choose 2} = 3\displaystyle {3 \choose 3} = 1
4\displaystyle {4 \choose 1} = 4\displaystyle {4 \choose 2} = 6\displaystyle {4 \choose 3} = 4
5\displaystyle {5 \choose 1} = 5\displaystyle {5 \choose 2} = 10\displaystyle {5 \choose 3} = 10
6\displaystyle {6 \choose 1} = 6\displaystyle {6 \choose 2} = 15\displaystyle {6 \choose 3} = 20
7\displaystyle {7 \choose 1} = 7\displaystyle {7 \choose 2} = 21\displaystyle {7 \choose 3} = 35

e individua la progressione aritmetica

  • 7
  • 21 (7+14)
  • 35 (21+14)

Soluzione 3

Genera le combinazioni, contale e individua la progressione aritmetica

n\displaystyle {n \choose 1}\displaystyle {n \choose 2}\displaystyle {n \choose 3}
3a b c
3
ab ac bc
3
abc
1
4a b c d
4
ab ac ad bc bd cd
6
abc abd acd bcd
4
5a b c d e
5
ab ac ad ae bc bd be cd ce de
10
abc abd abe acd ace ade bcd bce bde cde
10
6a b c d e f
6
ab ac ad ae af bc bd be bf cd
ce cf de df ef
15
abc abd abe abf acd ace acf ade adf aef
bcd bce bcf bde bdf bef cde cdf cef def
20
7a b c d e f g
7
ab ac ad ae af ag bc bd be bf
bg cd ce cf cg de df dg ef eg
fg
21
abc abd abe abf abg acd ace acf acg ade
adf adg aef aeg afg bcd bce bcf bcg bde
bdf bdg bef beg bfg cde cdf cdg cef ceg
cfg def deg dfg efg
35