Anno 2008 Suppletiva – 10 – Trapezi

Tenuto conto che \displaystyle \frac{\pi}{6}=\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^2}}\, dx si calcoli un’approssimazione di π, utilizzando uno dei metodi d’integrazione numerica studiati.


Metodo dei trapezi

nhixiyiArea= \displaystyle \frac{h}{2}\cdot (y_0+ y_1)
1\displaystyle \frac{1}{2}001= \displaystyle\frac{1}{4}\cdot\left(1+\frac{2\sqrt{3}}{3}}\right)
1\displaystyle \frac{1}{2}\displaystyle \frac{2\sqrt{3}}{3}= \displaystyle\frac{1}{4}+\frac{\sqrt{3}}{6}}
Pi greco= 6\cdot Area
= \displaystyle 6\cdot \left(\frac{1}{4}+\frac{\sqrt{3}}{6}}\right)
= \displaystyle\frac{3}{2}+\sqrt{3}
= 3,232051
nhixiyiArea= \displaystyle \frac{h}{2}\cdot (y_0+2\cdot y_1+y_2)
2\displaystyle \frac{1}{4}001= \displaystyle\frac{1}{8}\cdot\left(1+2\cdot\frac{4\sqrt{15}}{15}+\frac{2\sqrt{3}}{3}}\right)
1\displaystyle \frac{1}{4}\displaystyle \frac{4\sqrt{15}}{15}= \displaystyle\frac{1}{8}+\frac{\sqrt{3}}{12}+\frac{\sqrt{15}}{15}
2\displaystyle \frac{1}{2}\displaystyle \frac{2\sqrt{3}}{3}Pi greco= 6\cdot Area
= \displaystyle 6\cdot \left(\frac{1}{8}+\frac{\sqrt{3}}{12}+\frac{\sqrt{15}}{15}\right)
= \displaystyle\frac{3}{4}+\frac{\sqrt{3}}{2}+\frac{2\sqrt{15}}{5}
= 3,165219
nhixiyiArea= \displaystyle \frac{h}{2}\cdot (y_0+2\cdot y_1+2\cdot y_2+y_3)
3\displaystyle \frac{1}{6}001= \displaystyle\frac{1}{12}\cdot\left(1+2\cdot\frac{6\sqrt{35}}{35}+2\cdot\frac{3\sqrt{2}}{4}+\frac{2\sqrt{3}}{3}\right)
1\displaystyle \frac{1}{6}\displaystyle \frac{6\sqrt{35}}{35}= \displaystyle\frac{1}{12}+\frac{\sqrt{2}}{8}+\frac{\sqrt{3}}{18} + \frac{\sqrt{35}}{35}
2\displaystyle \frac{1}{3}\displaystyle \frac{3\sqrt{2}}{4}Pi greco= 6\cdot Area
3\displaystyle \frac{1}{2}\displaystyle \frac{2\sqrt{3}}{3}= \displaystyle 6\cdot\left(\frac{1}{12}+\frac{\sqrt{2}}{8}+\frac{\sqrt{3}}{18} + \frac{\sqrt{35}}{35}\right)
= \displaystyle\frac{1}{2}+\frac{3\sqrt{2}}{4}+\frac{\sqrt{3}}{3} + \frac{6\sqrt{35}}{35}
= 3,152196
nhixiyiArea= \displaystyle \frac{h}{2}\cdot (y_0+2\cdot y_1+2\cdot y_2+2\cdot y_3+ y_4)
4\displaystyle \frac{1}{8}001
= \displaystyle\frac{1}{16}\cdot\left( 1 + 2\cdot\frac{8\sqrt{7}}{21} + 2\cdot\frac{4\sqrt{15}}{15} +2\cdot \frac{8\sqrt{55}}{55} + \frac{2\sqrt{3}}{3}\right)
1\displaystyle \frac{1}{8}\displaystyle \frac{8\sqrt{7}}{21}= \displaystyle\frac{1}{16}+\frac{\sqrt{3}}{24}+\frac{\sqrt{7}}{21}+\frac{\sqrt{15}}{30}+ \frac{\sqrt{55}}{55}
2\displaystyle \frac{1}{4}\displaystyle \frac{4\sqrt{15}}{15}Pi greco= 6\cdot Area
3\displaystyle \frac{3}{8}\displaystyle \frac{8\sqrt{55}}{55}= \displaystyle 6\cdot\left(\frac{1}{16}+\frac{\sqrt{3}}{24}+\frac{\sqrt{7}}{21}+\frac{\sqrt{15}}{30}+ \frac{\sqrt{55}}{55}\right)
4\displaystyle \frac{1}{2}\displaystyle \frac{2\sqrt{3}}{3}= \displaystyle\frac{3}{8}+\frac{\sqrt{3}}{4}+\frac{2\sqrt{7}}{7}+\frac{\sqrt{15}}{5} + \frac{6\sqrt{55}}{55}
= 3,147578